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• A  fully  automated  system  to track  multiple  animals  in  a large  arena  without  losing  their  identities  is presented.
• The  system  learns  unique  bleach  patterns  on the  mice’s  fur  and  tracks  them  during  both  dark  and light  cycles.
• Identification  of  six  mice  in  the  experimental  setup  was  97%  correct  during  non-sleep  intervals.
• As  a proof  of  principle,  we  tracked  groups  of  four  mice  and  report social  trends  that  develop  across  hours  and  days.
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a  b  s  t  r  a  c  t

A  quantitative  description  of animal  social  behaviour  is informative  for behavioural  biologists  and  clini-
cians  developing  drugs  to treat social  disorders.  Social  interaction  in  a group  of animals  has  been  difficult
to  measure  because  behaviour  develops  over long  periods  of  time  and  requires  tedious  manual  scoring,
which  is  subjective  and  often  non-reproducible.  Computer-vision  systems  with  the  ability  to  measure
complex  social  behaviour  automatically  would  have  a  transformative  impact  on  biology.  Here,  we present
a method  for  tracking  group-housed  mice  individually  as they  freely  interact  over  multiple  days.  Each
mouse  is  bleach-marked  with  a unique  fur  pattern.  The  patterns  are  automatically  learned  by  the track-
ing software  and  used  to infer  identities.  Trajectories  are  analysed  to measure  behaviour  as  it  develops
over  days,  beyond  the  range  of acute  experiments.  We demonstrate  how  our  system  may  be  used  to
study the  development  of place  preferences,  associations  and  social  relationships  by tracking  four  mice
continuously  for  five  days.  Our system  enables  accurate  and reproducible  characterisation  of  wild-type
mouse  social  behaviour  and  paves  the  way  for high-throughput  long-term  observation  of the effects  of
genetic, pharmacological  and  environmental  manipulations.

Published by Elsevier B.V.

1. Introduction

Mouse models have been recently developed to study the cog-
nitive and social deficits observed in autism (Jamain et al., 2008;
Penagarikano et al., 2011), schizophrenia (Hikida et al., 2007;
Tremolizzo et al., 2002), Down syndrome (Olson et al., 2004;
Reeves et al., 1995) and fragile X syndrome (Kooy et al., 1996;
Zang et al., 2009). Social relationships in mice develop and evolve
over the course of many days (Hurst et al., 1993; Poole and
Morgan, 1975). The ability to carry out thorough, quantitative,
long-term observations would likely have transformative effects on
understanding and measuring social behaviour and its pathologies.
However, widely used assays are often performed for short dura-
tions that can miss persistent durable traits (Fonio et al., 2012).
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A key challenge in performing long-term assays is the ability to
obtain reliable annotation. However, it is not practical to have these
assays done by human experts because they are tedious, expen-
sive and not easily reproducible (de Chaumont et al., 2012; Spencer
et al., 2008). Computer vision systems that are able to analyse ani-
mal  behaviour automatically hold much promise (Reiser, 2009).
Despite recent progress, state-of-the art computer vision systems
are limited to the observation of two  mice sharing an unfamiliar
enclosure for a period of 10–20 min, often in partition cages, which
limit social interaction (de Chaumont et al., 2012; Spencer et al.,
2008). Significant progress in the classification of actions, once ani-
mal  trajectories have been computed, has recently been reported
(Burgos-Artizzu et al., 2012; de Chaumont et al., 2012; Jhuang et al.,
2010). However, reliable tracking and the identification of individ-
ual mice when multiple mice share the same enclosure for several
days remains an open problem.

Automatically tracking the identities of multiple animals in a
video sequence is difficult. Current approaches are based on the
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assumptions that the animals are always visible, do not over-
lap, and do not move too quickly, or employ heuristics, such as
size differences across animals (Dankert et al., 2009), constrained
environments (Branson et al., 2009) or artificially coloured mark-
ers (EthoVision, Noldus) to resolve animal identities. Attached
coloured markers are easily groomed out and are not discrim-
inable in infrared lighting, which is required for observation during
dark cycles. All of the above approaches can fail and require
human verification and correction of the results (de Chaumont
et al., 2012). Furthermore, mice have flexible bodies, are highly
interactive (cuddling, chasing, jumping on top of each other,
mounting, etc.), and live in fairly complex environments (e.g.,
environments involving nests and bedding into which the mice
burrow, which makes them invisible to the camera for periods
of time). These factors make tracking and identification challeng-
ing, particularly when prolonged observation of social behaviour is
desired.

We present a method that is capable of tracking individual mice
interacting socially in a group over days without confusing iden-
tities; identities are maintained even when individuals hide and
burrow in the bedding. The method consists of a single-camera
computer vision system that automatically learns the appearance
of each mouse and uses that appearance to infer each animal’s iden-
tity throughout the experiment. We  developed a set of uniquely
discriminable patterns for marking the back of each animal. These
patterns are produced by applying harmless hair bleach to the fur,
cannot be groomed out, and can be tracked under infrared illumina-
tion during both dark and light cycles. The trajectories computed
by our system may  be used to detect and quantify mouse social
behaviour (courtship, aggression, dominance, etc.) and to study its
evolution over days. The system is easily reproducible, inexpensive,
does not use any specialized hardware, user-friendly, and scalable
to allow high throughput (the system and installation instruc-
tions are available at http://motr.janelia.org). Using our system, we
characterised how social interaction developed in groups of four
wild-type mice (two males and two females) over a five-day period.

2. Results

2.1. Method overview

Recognising individual mice from overhead pictures is difficult
for both human observers and machines. To overcome this limita-
tion, we developed a method to apply a distinct pattern to the back
of each mouse using hair bleach (see Fig. 1a, Section 4). After pat-
terning, each mouse is filmed alone for 5–10 min  to collect diverse
samples of its appearance during normal behaviour (Fig. 1b and
c). The samples are then used to train image classifiers (one per
mouse). All mice are then placed together in the same enclosure,
where they are video-recorded continuously for five days under
infrared lighting for the actual study. A purpose-built computer
vision system tracked the positions of the mice and computed their
trajectories (Fig. 1d). In the final step, the system computed mouse
identities for each trajectory using Bayesian inference (Fig. 1e). On
a single CPU, the processing of each video frame is ∼300 ms  (10×
slower than real time). Processing can be done on a computer clus-
ter to improve performance. Processing a five-day video (at 30 FPS)
takes approximately 12 h on a cluster of one hundred 2.66 GHz four-
core processors. Short sequences (1–2 h) can be easily analysed on
a single computer overnight.

2.2. Mouse patterns

Inspired by naturally occurring patterns from the animal world
(Gordon, 1985) and by patterns used in error-correcting codes

(Blahut, 2003), we designed and tested more than a dozen differ-
ent patterns, ten of which are presented in Fig. 1a. The patterns
included large spots and thick stripes at different orientations and
positions. Many more patterns can be generated using the same
dyes. Our goal was to design patterns that could easily, quickly, and
reproducibly be drawn on the backs of mice and that were highly
discriminable from each other. The fur patterns slowly fade due to
dark hair regrowth but remain visible for almost three weeks.

To train our computer vision system to identify the mice, we
filmed each patterned mouse alone for several minutes (5–10 min)
as the mouse was  exploring the arena. Our tracking algorithm
detected the position and orientation of the mouse in each frame
and extracted a small image patch that was  centred and aligned
on the mouse (http://motr.janelia.org). Dense histogram of gradi-
ent (Dalal and Triggs, 2005) (HOG) features were extracted from
each image patch and used to train a classifier to discriminate each
mouse pattern from all other mouse patterns (1 vs. all, see Supple-
mentary Fig. 2, Supplementary Text).

The performance of each pattern classifier was then evaluated
in a cross validation procedure (k = 4) that tested it against the pat-
terns from all ten mice (10k samples per mouse) to discover which
patterns were maximally discriminable.

We  found that most patterns could be discriminated with high
accuracy. The average true positive rate (TPR) was 0.9 ± 0.04, and
the average false positive rate (FPR) was 0.01 ± 0.06 (see the con-
fusion matrix in Fig. 1f). However, we  found that some patterns
were more easily confused than others. For example, pattern five
(two vertical stripes) was  likely to be confused with pattern eight
(three vertical stripes). Manual inspection of misclassified sam-
ples revealed that errors occurred when patterns were heavily
deformed (due to the flexible nature of the mouse body), par-
tially obscured or completely occluded. This phenomenon typically
occurred when mice sat or reared.

To find the optimal set of four patterns, we tested all possible
pattern quadruplets and computed the error frequency (average
false positive + false negative) for each quadruplet (Supplemen-
tary Fig. 3a and b). We  found that many quadruplets of patterns
produced roughly similar performance levels (the top ten com-
binations are given in Supplementary Fig. 3c), indicating that the
method is relatively robust to the particular patterns used. For all
of our experiments, we  chose patterns 1–4 (Fig. 1a).

Small image patches obtained from videos showing only one
mouse in the imaging setup (“solo samples”, Fig. 1g) contained less
variability than samples obtained from videos with four mice in the
imaging setup (“group samples”, Fig. 1i). Classifiers were trained on
solo samples and required no human annotation. Classifiers per-
formed well on solo samples (Fig. 1h, average TPR 0.96 ± 0.01), but
their performance dropped when tested on group samples (average
TPR 0.88 ± 0.13, Fig. 1j). Thus, frame-by-frame classification was
not always reliable due to occlusion and large variations in appear-
ance (Fig. 1i), suggesting that integration of the information from
multiple frames was  needed to accurately recover identities.

2.3. Detection and tracking

The function of the tracker in our system is to detect and track
the poses (position and orientation, modelled by an ellipse) of
multiple mice without concern for identity (Supplementary Text,
section 3). The tracker works incrementally from the beginning to
the end of the video. For each new frame, the poses of the mice
from the previous frame are extrapolated and perturbed randomly
to generate multiple hypotheses regarding mice positions in the
current frame. Multiple instances of the expectation maximisation
(Bishop, 2006) (EM) algorithm are initialised with these random
hypotheses to estimate the most likely poses in the current frame.
The best fitting hypothesis is then selected as the current pose, and

http://motr.janelia.org/
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Fig. 1. System framework. (a) Ten patterns dyed onto the backs of the mice. Each pattern was created by bleaching the fur for several minutes (see Online Methods). (b) A
single  mouse was  placed in the imaging setup and filmed for 5–10 min. Multiple images of the mouse were collected. (c) The process was repeated, and images were collected
for  each individual in the group. Using the four mice’s images as a training set, a classifier was  trained to distinguish individual mice. (d) The mice were tracked in the video
of  the experiment without using identity information, which generated trajectories with possible identity swaps. (e) Information from trajectories and the learned classifiers
was  combined to generate correct, identity-preserving trajectories. (f) Performance of mouse identity classifiers on images collected when each mouse was filmed alone. Each
column represents the performance of a classifier trained to identify a single mouse. Entries on the main diagonal represent the true positive rate (correct identification of the
mouse in a test set). Off-diagonal entries correspond to false alarm rates (incorrectly assigned mouse identity). (g) Examples of the variations in appearance observed when
the  mice were filmed alone. (h) Performance of four classifiers trained to identify the patterns [1–4] from (a) and tested on images obtained from single mouse videos. (i)
Examples of the variations in appearance from a 30 min  video of four mice. (j) Performance of the same classifiers in (d) on images obtained from a 30 min  video of four mice
simultaneously present in the enclosure. Rather than directly using the classifier’s output, our method identified mice by combining the classifier’s identity with trajectory
information (see Fig. 2).

that hypothesis is associated with the corresponding pose in the
previous frame. The tracking of a mouse stops when not enough
pixels are available (e.g., when the mouse burrows in the bedding)
and reinitialises when new unassigned pixels appear (e.g., when
the mouse emerges from the bedding). Multiple mice disappear-
ing and reappearing (e.g., due to burrowing) do not pose a problem
because their identities are resolved in a later step (see Supple-
mentary Text, Supplementary Fig. 4). The process is repeated for all
frames in the video in a single pass from the beginning to the end,
resulting in four trajectories. To reduce processing time, the video
is automatically split into shorter segments that are processed in

parallel on different computers (see Supplementary Text, section
3.1, 3.3, Supplementary Fig. 5).

Each trajectory obtained from the tracker may  track different
mice at different times because when two mice interact in close
proximity, their identities may  be swapped. These identity errors
are resolved in the next step using the patterns on each mouse.

2.4. Propagating identity information

Once trajectories are obtained (in the previous step), the mouse
identity classifiers are used to assign identities to the mice that
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are associated with each trajectory in each frame. Good identity
assignments result in each mouse’s identity being consistent with
its appearance in each frame and in each mouse’s trajectory being
smooth.

Our system uses a hidden Markov model (HMM)  to associate the
most likely mouse identities with each trajectory in each frame.
The model is defined over all possible assignments of trackers to
identities. For example, given a frame with four mice, there are 24
(4!) possible ways to assign identities to the four detected ellipses
(two possible assignments are shown in Fig. 2a, each identity is
colour-coded). The identity classifiers assign probabilities to each
identity assignment. The probability of transitioning from one iden-
tity assignment to another is low when the mice are well separated
in space and high when the mice are very close to each other
(Fig. 2a, Supplementary Text, section 4.3). The probabilities of each
identity assignment, which are purely based on frame-by-frame
appearance-based identity classification, for a short (15 min  long)
sequence are shown in Fig. 2b. Each row corresponds to an identity
assignment, and each column represents a frame. States with high
identity probabilities are denoted in red.

Selection of the most probable identity (ID) assignment in each
frame that is purely based on mouse appearance results in a jagged
solution (see pink outline in Fig. 2c) because the most probable
identity of each mouse in each trajectory changes frequently when
visual classification is ambiguous. Comparison to ground truth
identities showed that frame-by-frame selection of the most likely
assignment had an error rate of approximately 10%. The HMM  uses
the additional constraint that cross-trajectory swaps are only likely
when two trajectories come very close (i.e., see the example in
Fig. 2d) and thus computed better assignments of identities and
yielded 100% correct identification (Fig. 2e).

2.5. Validation

To evaluate our system’s performance, we classified each mouse
as huddled when it was in close contact with another mouse and
non-huddled otherwise (see Section 4 and Fig. 3b). Huddled mice
are typically clustered together sleeping and are difficult to tell
apart, which poses a difficult problem for both correct segmenta-
tion and identification for both human and automatic annotators.
This problem has little effect on behavioural analysis because the
huddled mice are most often sleeping, and their behaviour is eas-
ily classified even when identification is uncertain. By contrast,
correct mouse identification during non-huddled events is crucial
for the study of individual and social behaviour. Huddling events
were abundant and accounted for 55% of video frames. Huddling
events were much more frequent during the light cycle (when the
mice were less active) than during the dark cycle and increased in
number over the course of the five-day experiment (Fig. 3a).

We  quantified the performance of our system in estimating
mouse pose and found that it performed comparably to human
annotators regardless of whether the mice were huddling. To per-
form this quantification, we trained two human observers to draw
tight ellipses around the bodies of the mice in 470 frames randomly
sampled from our video recordings. We  found that the average dis-
crepancy in determining the position of each mouse between the
two human annotators was 1.6 ± 0.8 mm,  while the discrepancy
between a human annotator and the machine was  1.8 ± 2.8 mm
(see Supplementary Fig. 6 and Supplementary Text sections 6 and
7).

We also measured the accuracy of our system in classifying
mouse identities over long periods of time. A human annotator
manually labelled mouse identities in hour-long sections of the
recording during the dark and light cycles over five days (Fig. 3b).
We compared the annotator-determined identities with those
computed by our algorithm for one frame every 5 s during the

annotated sections. Overall, 34,416 mouse images were manually
annotated, which amounted to 12 h of annotated video (out of the
total of 120).

Mice were correctly identified during non-huddling in 97.3%
(19,649/20,193) of the images. Performance was  approximately
constant across the five days of the experiment. Identification
errors (2.7%) were in part due to segmentation errors (Fig. 3c).
Huddled events posed a much harder problem for our system;
we found that 58% (8262/14,223) of those frames contained cor-
rect segmentation and correct identities, while 28% of the mouse
images were poorly segmented, and 13% were properly segmented
but were assigned incorrect identities. Thus, our system was capa-
ble of maintaining correct identities during active behaviour over
days during both the dark and light cycles, and errors were almost
entirely limited to mice that were huddled together and motionless.

To further evaluate the performance and generalisation of our
system, we  recorded 12 continuous hours of video of six mice in the
imaging setup during a dark cycle. We  ground-truthed the video by
manually annotating mouse identities every 30 s regardless of hud-
dling condition. Out of 8400 annotated mouse images, 99.4% were
properly segmented and correctly identified, 0.3% were assigned
incorrect identities and 0.3% were segmentation errors (Fig. 3d).

Fighting behaviour can often involve rapid movements, as mice
jump and wrestle with each other. We  identified several fighting
bouts in one of our 5-day sequences by thresholding mouse veloc-
ity. Out of 10 randomly selected fighting bouts (four are shown in
Supplementary Fig. 12), only 5% of the frames contained incorrect
identities of the fighting mice. In all cases, identities were correct
just before and just after the fight. Fights typically lasted 15–60
frames (0.5–2 s).

2.6. Development of social behaviour in wild-type mice

We characterised the behaviour of six sets of four C57BL/6J wild-
type mice (two brothers and two sisters) over five days. Males and
females had been housed separately prior to the experiment, which
allowed us to observe how social hierarchies develop when mice
are grouped together for the first time. At the beginning of the
recording, the mice were added to a large (.6 m × .6 m × .6 m)  home
cage equipped with food, water, and two tube shelters (see Fig. 1a,
Supplementary Fig. 7).

After capturing video for five days (12,960,000 frames), we used
our system to compute the trajectories of each individual over the
entire period. We  analysed the trajectories by calculating statistics
(places visited, velocity, and distance between mice) and detecting
actions. For the latter task, we  employed JAABA, a freeware software
tool for detecting behaviours in animal trajectories (Kabra et al.,
2013).

Fig. 4a shows how much time the mice in the first set spent at
any given location in the enclosure. The four corners, the entrances
to the tubes and inside the tubes were preferred locations (Fig. 4b).
A similar pattern was  observed across multiple experiments (Sup-
plementary Fig. 8). Fig. 4c shows a histogram of time spent at these
locations. We found that mice switch, as a group, between the
two tubes during the light cycle (events marked by white arrows
in Fig. 4c). We  observed this phenomenon in all groups, and it
appeared to be spontaneous and not associated with human pres-
ence or disturbance. Additionally, over days, the mice tended to
spend more time at one of the corners (in this case, the bottom left
corner, see Fig. 4c).

Overall, the mice spent less time at the corners compared to the
tubes and tube entrances (p < 0.0001, U-test, Supplementary Fig.
9a). This was  true for all mice in all experiments except one male in
Experiment 5 (Supplementary Fig. 9a, fourth experiment column).
Mice spent more time at the corners on the last day compared to
the previous days (p < 0.05, U-test, Supplementary Fig. 9b).
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Fig. 2. Propagating identity information. (a) In each frame, the identities (identified by letters and corresponding colours) of the four tracked mice (identified by numbers)
are  unknown. Twenty-four identity assignments were possible (two are depicted). (b) Identity assignment probability matrix for a 15 min video (red denotes high likelihood).
Each  row represents a fixed identity assignment for each of the four tracked mice. Each column corresponds to a video frame. (c) Identities selected according to the maximum
likelihood found in each frame, i.e., by the classifiers shown in Fig. 1. Notice the jagged solution, which suggests that the assignments were switched frequently (incorrectly)
between different trajectories. (d) Identities can only change when mice are in close proximity. Some identity swaps were more likely than others, given the current identity
assignment. For example, swapping of the red and blue identities was  more likely (due to their proximity) than swapping of the red and green identities. (e) Identity likelihood
computed by mouse classifiers was combined with mouse proximity using a hidden Markov model (HMM)  to produce correct identity assignments over the entire video
sequence (piecewise-constant pink trace).

To quantify how groups are formed and which groups formed
most frequently, we counted all possible mice group configurations.
We considered two mice to be in the same group if the minimal dis-
tance between their ellipses was smaller than half their body width.
Given four mice, 15 group configurations that range from all mice
forming a single group (Fig. 5a, first row, group configuration #1) to
every mouse being in isolation are possible (Fig. 5a, last row, group
configuration #15). We  found that mice spent the majority of their
time during the first dark cycle in isolation (Fig. 5b, top). However,
this behaviour gradually changed, and mice spent less and less time
in isolation over the next days. We  found this trend to be significant
(p < 0.01 one-way ANOVA). Two-way ANOVAs for each experiment
with husbandry condition as a factor (standard or enriched) did not
reveal any significant effect of rearing conditions on this behaviour
(p < 0.001 for day, p > 0.5 for husbandry). We  also observed a sig-
nificant increase in the fraction of time the mice spent all together,
and again, there was no difference between husbandry conditions
(Fig. 5b, p < 0.001 for day, p > 0.1 for husbandry, two factor-ANOVA,
Fig. 5b bottom). These changes in group composition suggest that

the social relationships of the mice were developing continuously
throughout the five-day experiment.

Preferred location and preferred associates in a group are pas-
sive proxies of social preference. To investigate active behaviours,
we quantified social interaction by focusing on male following
behaviour (e.g., both male-following-male and male-following-
female; see Supplementary Text for further classifier details). An
example of male following is shown in Fig. 6a. In both standard
and enriched conditions, following behaviour was  strongly cir-
cadian, with the vast majority of follows occurring during the
dark cycle (Fig. 6b, p < 0.006). In all cases, the largest number of
follow events occurred in the first dark cycle. In the enriched
condition cages (Exp 4, 5 and 6) intermediate levels of follow-
ing were maintained over the five days, while in two of the three
standard condition cages (Exp 1 and 2), follow rates dropped to
low levels after the first dark cycle, suggesting a reduction in social
interaction in these cages. Follow durations and speed distribu-
tions were similar across experiments (see Supplementary Fig. 10a
and b).
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Fig. 3. Validation of identity assignments. (a) Fraction of time spent each day in a huddling configuration (orange) compared to a non-huddled configuration (cyan). Left:
during dark cycles, right: during light cycles. (b) Intervals of the 5-day test sequence for which mouse identities were established by a trained human observer in Experiment
5  (black). Dark cycles are represented in dark grey, and light cycles are represented in light grey. (c) Performance of the tracking system measured in terms of correct
identification (green), incorrect identification with correct segmentation (red) and incorrect segmentation (blue). The upper plot denotes the performance averaged across
the  entire five-day experiment broken down into huddling and non-huddling events. The bottom plot depicts performance as a function of day. (d) The performance of the
system tracking six mice for 12 continuous hours during a dark cycle. Conventions are the same as (c). A frame from the video is shown.

It has been shown that male mice develop dominance relation-
ships in which one male is both successful in agonistic interactions
and has more mating opportunities (Dewsbury, 1981) and higher
reproductive success (D’amato, 1988; Hurst et al., 1993). We
wondered whether following behaviour would display a similar
asymmetry between males and made the prediction that one male
would do the majority of the following (i.e., following both the other
male and the females). To explore this possibility, we  developed the
two following indices: the first was based on male–male following
behaviour, and the second was based on male–female following
behaviour (see Section 4). The male–male index was based on the
amount of time each male spent following the other male such that
a value of +1 indicates that all of the male–male follows were per-
formed by male 1 following male 2, while a value of −1 indicates
that all of the male–male follows were performed by male 2 fol-
lowing male 1. An example of the male–male index as a function of
time is shown in Fig. 6c (open circles, data from Exp 1). The males
began by following each other equally (index close to zero), but
as time progressed, male 1 spent more time following male 2. The
male–female index was  computed similarly using the amount of
time each male spent following the females (see Section 4). We
also observed a gradual increase in the female follow index of male
1 over the first 12 h (Fig. 6c, filled circles).

We  then plotted the male and female follow indices against each
other for every hour to produce a follow index graph (see Fig. 6d).
To simplify comparison across cages, we designated the male with
the higher male–male index in the first 12 h as male 1 and the other
as male 2. If the male–male and male–female indices are correlated
and stable, all values of male and female follow indices should be
greater than 0 and should result in points in the upper right-hand
corner of the follow index graph (as in Fig. 6d, first dark cycle of
Exp 1). The follow index graph for all six cages is shown in Fig. 6e.

In all enriched cages (Exp 4–6), the male–male and male–female
follow indices were greater than zero from the first block, indicat-
ing that a single male was  responsible for the majority of both the
male–male follows and the male–female follows, while all standard
cages had values outside the upper right-hand corner in the first
dark cycle, indicating that male–male behaviour and male–female
behaviour were not completely correlated at first. By the end of the
first dark cycle (12 h), however, all six cages had male and female
follow indices in the upper right-hand corner.

The previous analysis focuses on the use of following behaviour,
detected using the output of our tracker, to train a behavioural clas-
sifier. It is important to note that many different behaviours could
easily be quantified using this system. For example, the system can
also be used to detect simple behaviours such as walking (Kabra
et al., 2013) or more complex behaviours such as mating events
(see Supplementary materials).

3. Discussion

We developed a method for tracking multiple socially interac-
ting, individually identified mice across multiple days that does
not confuse their identities. Our system is fully automated and
requires minimal human intervention. The software is open source
and freely available at http://motr.janelia.org. Our method inte-
grates information over time and reliably computes the identity of
each mouse, even in video frames in which instantaneous identity
is difficult to discriminate due to pattern occlusion or deforma-
tion. We  demonstrated the applicability of our system by tracking
several groups of four mice over a five-day period and observing
how behaviour evolved over hours and days. To verify the appli-
cability of our method to different numbers of mice, we computed

http://motr.janelia.org/
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Fig. 4. Mouse trajectories and dwelling places for Experiment 5. (a) Example trajectories and position histograms for each individual mouse and for the entire group. Data are
presented for 2 min, 5 min, 30 min, 12 h (first light cycle), 12 h (first dark cycle), all light cycles (5 days), and all dark cycles (5 days). Each coloured histogram was constructed
by  computing the percentage of time spent in a given pixel. Data were smoothed and are presented on a log scale for improved visualisation. (b) Two dimensional 2D position
histogram for all mice (top) and selected monitored regions (bottom, highlighted in white). (c) Ethogram summarising the fraction of time each mouse spent in each of the
monitored regions. Colour codes denote mice identities, similar to (a). White arrows denote events in which mice changed their sleeping place from one tube to the other.

Fig. 5. Group configuration analysis. (a) Ethogram denoting the percentages of time spent in one of 15 possible group configurations. Group is denoted by the colour-coded
male  and female symbols on the left. Dark and light cycles are denoted by the grey bars on top. (b) Top: fraction of time spent during dark cycles in group configuration 15
(every  mouse on its own). Each colour denotes a different five-day experiment. Bottom: fraction of time spent during dark cycles in group configuration 1 (all mice in a single
group).  (c) Difference in the fractions of time males 1 and 2 spent in a group with females. Each colour denotes a different experiment.
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Fig. 6. Male following behaviour. (a) Example of male 1 ( ) following male 2 ( ). The trajectory line is thick during the following event and becomes thin at the end of
the  event, and the time between arrows is 1 s. Ellipses indicate the position of the four mice at the beginning of the follow event, and the sticks indicate the tails. The positions
and  movements of the female mice are indicated by the pink and red symbols. (b) Following rate as a function of time for all six experiments. (c) Example male–male follow
(open  circles) and male–female follow indices (filled circles) for the first dark cycle of Experiment 1. (d) Data from the first dark cycle of Experiment 1 (standard rearing
conditions). Each hour of observation is represented by an open circle. The male follow index is plotted as a function of the female follow index; time is indicated by colour
saturation, with more saturated colours representing later times. (e) Following data for all six experimental cages. Standard cages are in blue, and enriched cages are in red.
All  enriched cages were fully contained in the upper right-hand quadrant, while each standard cage produced data points that spilled into the other quadrants, indicating a
more  complex evolution of male–female and male–male social interaction patterns.

trajectories in a six-mouse cage and achieved excellent identifica-
tion performance.

We  measured proxies of social behaviour (preferred location,
group setting, following) and found that they changed across days.
Additionally, we found no differences between standard-reared
and enriched-reared mice in simple social metrics, such as group
association, but we found differences in more complex metrics,
such as male and female following behaviour. The lack of differ-
ences between standard and enriched cages in simple association
metrics may  be due to the mice’s tendency to associate with
each other even across dominance relationships (Uhrich, 1938).
This observation underscores the importance of quantitative and
detailed behavioural descriptions in untangling social deficits. Such
behaviour would be difficult to assess in a short-term experiment.
Additionally, our method was able to demonstrate that animals
that experienced enriched rearing environments more quickly
adopted consistent social roles, an observation that has been previ-
ously made using labour-intensive manual scoring (Branchi et al.,
2006).

Our method was designed with cost and reproducibility in mind.
It is based on a single overhead camera to reduce the need to store
and process multiple video feeds. Processing long videos (days) is
fast on a large computer cluster, and shorter experiments (spanning
a few hours) may  be analysed on a single CPU.

The ability to correctly keep track of identities over long periods
of time opens up a wide range of possibilities for developing new
assays for the study of aggression and courtship. We  expect that
our system will be a valuable tool for genetic screening because it
enables the examination of the effects of genetic, pharmacological
and environmental manipulations on long-term social behaviour.

4. Materials and methods

4.1. Animals

Male and female C57Bl/6J mice (Jackson Labs) aged 6–17 weeks
were used. Prior to recording, two  female mice (sisters) and two
male mice (brothers) were housed in separate cages. Mice were
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raised in either standard or enriched conditions. Standard-reared
mice were acquired from Jackson Labs at 3 weeks of age and housed
in same-sex pairs (siblings) in large mouse cages until the recording
session. Enriched-reared mice were born as the second of three
litters into a large (0.61 m × 0.61 m × 0.61 m)  population cage with
two adult males and two adult females. Enriched-reared mice were
removed from the population cage at 3 weeks of age and housed in
same-sex pairs (siblings) in large mouse cages until the recording
session.

We  exposed the female mice in the study to bedding from the
males to be used in the study at least 7 days prior to recording
to ensure that the females were cycling regularly (Whitten, 1959).
Vaginal smears from both females of each pair were then collected
and used to determine their oestrus states. Recordings began when
both females were in proestrus. Mice always had ad libitum access
to food and water.

4.2. Fur patterns

Individually distinctive patterns were bleached into the fur of
the mice. Mice were anaesthetised with isoflurane (2%) in an induc-
tion chamber. Lab tape was used to mask out a chosen pattern on
the back of each anaesthetised mouse. Human hair bleach (Clairol
Nice ’N Easy Born Blond Maxi) was mixed using the manufacturer’s
instructions. Bleach was applied only to the top of the fur to avoid
irritating the skin. The tape was removed, and the mice were main-
tained under anaesthesia (1.5–2% isoflurane) for 20 min. The bleach
was then rinsed thoroughly using warm water, the fur was  dried
and the mice were placed in a heated cage to recover from anaes-
thesia.

4.2.1. Mouse enclosure and recording equipment
Mice were housed in a 0.61 m × 0.61 m × 0.61 m polycarbo-

nate population cage. Bedding was composed of a 25%/75% mix
of corn cob and Alpha-Dri (Shepherd). Shelters for the mice
were custom-made square-section tunnels made of IR-transparent
acrylic (cylindrical-section tunnels distorted the image of the mice
within the tunnel and degraded tracking performance). Video
was recorded using an overhead Basler A622f monochrome 1394
camera (16 mm fixed focal length lens with a manual focus and
iris, C-mount, 2/3′′ format, F-stop: 1.4, filter: 25.5 mm,  pitch: 0.5,
graftek.com; part # HF16HA-1B). The camera was placed cen-
trally, facing downwards, approximately 120 cm above the cage
floor (see Supplementary Fig. 7). Illumination was provided by four
infrared LED light sources placed adjacent to the camera (IR-LT30,
850 nm,  30◦ beam, Reytec Imaging). Because the mice were filmed
continuously across multiple days and were on a 12 h day/night
cycle, an infrared-pass filter (Hoya RM72 Infrared filter, B&H Photo;
OIR7252) was used to minimise the effect of changes in ambient
illumination on the recordings as the room lights were turned on
and off. Video recording was monitored from an adjacent control
room. Video (30 Hz, 1024 × 768 pixel image) was streamed con-
tinuously to an external hard drive using StreamPix 5 software
(Norpix). Camera gains and black levels were adjusted prior to the
experiments to obtain good contrast between the mice and the
background without saturating the mice.

We recorded the groups of four mice for five days and then
recorded the single-mouse videos used to train the mouse classi-
fiers so that all mice would be new to the enclosure at the beginning
of the experiment.

4.3. Huddled mice

We  define an image of a mouse as “huddled” if the minimal
distance between the mouse ellipse and the closest other ellipse

was smaller than a pre-defined threshold, which was 6 mm,  and if
the mouse’s velocity was smaller than 3 pixels/frame (7.2 cm/s).

4.4. Follow index

We  define the male and female follow indices as follows:

male − male follow index = m1m2  − m2m1
m1m2  + m2m1

male − female follow index = m1f  − m2f
m1f + m2f

where m1m2  is the amount of time male 1 spent following male 2,
m2m1  is the amount of time male 2 spent following male 1, m1f is
the time male 1 spent following females and m2f is the time male
2 spent following females.

4.5. Statistical methods

The duration and speed distributions of the follow events were
compared using paired Kolmogorov–Smirnov tests with Bonfer-
roni corrections for multiple comparisons. Comparisons of follow
numbers were made with two-factor repeated measures ANOVAs.
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Automated multi-day tracking of mice for the analysis of social behavior 
 
Shay Ohayon, Ofer Avni, Adam L. Taylor, Roian Egnor and Pietro Perona 

 
Supplementary materials 
 
1. Background subtraction 
 
The background model of the arena is automatically estimated by the system by 
sampling 50 evenly spaced video frames and computing their pixelwise median B (see 
Supplementary Fig. 1b).  Subsequently, foreground pixels (F) of any frame I were 
defined as those that differ from the background (B) by a fixed amount:  

Eq1:F I B Th � ! , 

where Th  is the threshold. The foreground image is composed of all foreground pixels. 
The threshold is computed with the help of the user, who is prompted to place ellipses 
on the mice that are visible in 7 randomly selected frames. Using this information, the 
optimal threshold Th for background subtraction is computed by minimizing a cost 
function that counts false alarms (the number of pixels outside known mice positions) 
and misses (number of pixels that do not pass the threshold inside the known mice 
positions).  
  
2. Tracking single mice  
 
For each foreground image a morphological close operation (1mm) is applied to fill in 
missing pixels that do not exceed the thresholds (see Supplementary Fig. 1c-e). Small 
connected components are discarded and the remaining largest connected component 
(CC) is assumed to correspond to the mouse. An ellipse is fit to the largest connected 
component to approximate mouse shape (see Supplementary Fig. 1f and section 
below) . We call it the `mouse ellipse' in the following.  
 
2.1 Fitting ellipses  to connected components 
 
 The boundary of each  connected component (CC) that is associated to a mouse is 
approximated in our system by an ellipse.  Call � �,i i iX x y  the coordinates of the pixels 

in the CC; call P  and ¦ the mean and the covariance of the pixel coordinates. Then the 

ellipse is defined by the equation: � � � �1 22TX XP P�� ¦ �  .  
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Notice that the ellipse is centered inP , that the major and minor axes of the ellipse 
correspond to the eigenvectors of ¦  and that the with and length of the ellipse are 
equal to twice the square root of the eigenvalues of ¦ . 
 
An example of a fitted ellipse to foreground pixels is shown in Supplementary Figure 1f. 
 
2.2 Collecting appearance exemplars  
 
Exemplars of mice images are collected from the single-mouse training videos by 
sampling a rectangular patch tightly fitted around the ellipse outlining the mouse in each 
image. Pixels inside the patch are resampled using bi-linear interpolation, resulting in an 
111x51 (10x5 mm) image patch showing the mouse in a standard orientation (i.e., 
head/tail facing towards the positive horizontal axis). Dense HOG features are extracted 
from the aligned image patch. We used block size of 10 pixels (3x9 blocks, 31 features 
per block), see (Felzenszwalb et al., 2010). This resulted in a feature vector of 837 
dimensions. A small random subset of frames (~1000) is selected by the system and 
corresponding feature vectors are saved. Those feature values represent exemplars of 
known mice appearance.  
 
2.3 Collecting head/tail exemplars  
 
The ellipse that is fit to a mouse’s image is ambiguous as to the animal’s orientation. 
Mouse orientation may be estimated from its direction of motion when it is moving fast; 
when mice are moving slowly (or backward) such information is unreliable. Information 
on head/tail orientation may be obtained from the image as well. To train a head/tail 
classifier the system automatically collects exemplars of fast moving mice for which 
head orientation can be reliably determined based on velocity. For those frames, a 
bounding box is placed on the mouse ellipse and HOG features are computed on the 
aligned image patch (similar to appearance exemplars).  These are used as positive 
exemplars for a mouse facing with its head to the right of the horizontal axes. The same 
image patches are then rotated 180 degrees and HOG features are computed for the 
rotated image patches. These features are used as negative exemplars (where tail is 
facing to the right of the horizontal axes). From these positive and negative examples a 
head-tail classifier is trained. 
 
3. Tracking N mice 
 
3.1 Parallel processing and jobs bootstraping 
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Video sequences are analyzed in parallel.  The software for video recording 
automatically splits multiple-day recordings into 12-hour video files (~30GB each). Our 
system splits each video file into about 260 non-overlapping 5000-frame segments. 
Each video segment is analyzed independently of all other segments.  
 
The analysis of each video segment starts by generating multiple hypotheses of mice 
positions and orientations for the first frame (see Supplementary Fig. 5a-b). The first 
frame is background subtracted and connected components are computed. Hypotheses 
are generated by computing all possible matches between connected components and 
N mice. Unlikely hypotheses, such as those containing ellipses that are too big (major 
axis larger than 55 pixels) or too small (major axis smaller than 18 pixels) are discarded. 
 
Each hypothesis results in a tracking job with a different initial condition and is 
submitted to a computer cluster to be processed on one of the available nodes (see 
tracking algorithm below). The output of each job is N trajectories for the corresponding 
video segment, as propagated from the initial mice pose hypothesis in the first frame. 
The resulting video segment trajectories are then stitched together to obtain a final  set 
of N trajectories for the entire video (see section below). 
 
3.2 Tracking algorithm for a video with N mice 

 
Tracking proceeds incrementally. Supppose that the position and orientation of the N 
mice has been computed at frame t-1 and frame t. The steps for analyzing frame t+1, 
are the following: 
 
1. For each mouse, compute its predicted pose in frame t+1 by damped linear 
extrapolation of frames t and t-1: � �1 1

i i i i
t t t tp p d p p� � � � , where i

tp  corresponds to the i’th 

ellipse parameters at frame t (parameters are position, size and orientation).  d is a 
damping coefficient used to smooth predictions. d typically equal 1, unless there was 
another mouse in close proximity in the previous frame (such that the two mice ellipse 
intersect).  In the latter case, d is set to 0.1 which reduces spurious predictions due to 
possible poor segmentation.  
 
2. Fit foreground pixels with a 2D Gaussian Mixture Model (N mixtures). Each mixture 
component corresponds to one of the mice. Fitting is done with Expectation 
Maximization algorithm (EM), see (Bishop, 2006). EM requires an initial solution and 
then iterates the mixture parameters until convergence. Multiple initial solutions 
(~M=15) are generated by perturbing the predicted ellipse positions with small random 
Gaussian noise.  
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3. Each of the M converged solutions contains N ellipses and is given a score to assess 
its goodness of fit to the actual image. The score estimates on how well the converged 
ellipses fit actual pixel values. This is done by sampling the image patch contained in a 
fixed bounding box that fits tightly around each ellipse I (see Supplementary Materials 
Sec. 2.2), computing the HOG features (Hi) of the image patch and comparing the 
features to the stored database of feature vectors (see section 2.2): mini iZ

d H Z � . id  

represents the minimal feature distance to a known mouse appearance, Z is the set of 

all stored feature vectors. The score of a solution is 
1

N

i
i
d

 
¦ . The solution with the minimal 

score is selected and corresponds to the final ellipse placement in frame t+1. 
 
4. Handle tracking failures / degenerate cases: if no detected pixels are found close to 
the placed ellipse in the previous 30 frames, consider this tracked mouse to be lost. 
Continue to track with N-1 mice.  
 
5. If a large connected component appears that does not have an ellipse close to it and 
a mouse was previously lost, add an ellipse on newly detected connected component 
and declare the lost mouse found.  
 
The process is then repeated for the next frame. 
   
3.3 Merging jobs and stitching trajectories 
 
To compute the mouse trajectory for the entire video sequence results from individual 
jobs need to be stitched together. Notice that some jobs analyzed the same video 
segment, but with different initial conditions. Therefore, the problem at hand is selecting 
the jobs with the correct initial conditions. Correct initial conditions will propagate well, 
while incorrect initial condition (say, two ellipses on the same mouse) will result 
degenerate events having unlabeled connected component.  
 
Results from all jobs are stitched together using Dijkstra shortest path algorithm. The 
system constructs a directed acyclic graph (V,E), where V denotes the vertices and E 
denotes the edges (see Supplementary Fig. 5c). Each vertex iv  represents the tracked 

location of all four mice in a video segment. Two vertices iv and jv  connect with an 

edge if the last frame of hypothesis iv  is the same as the first frame of hypothesis jv  

(i.e. tree structure). Each edge is assigned a weight that is computed from two terms. 
The first term measures the similarity of mice poses in the last frame of job iv  to the first 

frame of job jv (see Ellipse distance metric below). The second term counts how many 
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one to identity B, etc. For N mice N! different assignments are possible, therefore the 
size of the HMM state space is N!. The problem of inferring identities is thus reduced to 
a sequence in state space. The HMM is solved using the Viterbi algorithm, which finds 
an optimal state sequence > @1 2 3, , ,..., TS S S S S  for the given observation sequence 

> @1 2 3, , ,..., TO O O O O by maximizing: � �arg max | ,
S

p S O O , where O  is the model, defined 

by its states and state transition matrix. 
 
4.2 Modeling observation probabilities 
 
To propagate information with the Viterbi algorithm we need to define the observation 
probability: > @� �1 2| , ,.. j j Np O S i i i , i.e., the probability of observing the set of image 

patches, where each image patch is computed in the fixed size bounding box centered 
on the detected ellipses, given the assumption that the identity assignment is known ( jS

). We assume that the mouse images are independent once the identity of the mouse in 
each image patch is known, therefore 

Eq7: � � � � > @� �1 2

1

| , ,..., | |
N

N k
j j j j j j j j

k

p O S p O O O S p O ID S k
 

   � . 

That is, the probability of observing the images given state jS  is the multiplication of the 

probability of each one of the small image patches  k
jO  under the assumption that it 

belongs to identity > @jS k . 

 
To model > @� �|  k

j jp O ID S k  
 we take the pixel values inside image patch k

jO  and 

transform them to a HOG feature vector. We then reduce the dimensionality to 1D using 
fisher linear discriminant analysis (LDA), see (Bishop, 2006). Therefore, at the end of 
this process, we obtain scalar (x) which describes k

jO . The projection coefficients for 

LDA are computed by setting all the positive exemplars to identity A and all the negative 
exemplars to mice identities that are not A. Exemplars are collected during the tracking 
of single mouse videos (see section 2.2).  Finally, we model > @� �|  k

j jp O ID S k  using 

location-scale t-distribution: 

Eq8: > @� � 1| ~ ,�§ · ¨ ¸
© ¹

k
j j

xp O ID S k t P Q
V V

, 

which is fitted to the projection of positive exemplars of identity A.  We found t-
distribution to give a better fit to the data compared to Normal distribution 
(Supplementary Fig. 2a-b) 
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4.3 Modeling state transitions  
 
The ID-assignment state-transition matrix used to solve the identity HMM represents the 
probability of the transition from one state (an assignment of mouse identities to 
trajectories) to another from one frame to the next. The mouse identity assignment to 
two trajectories may only change when the corresponding mice are very close to each 
other, i.e. the two trajectories are sufficiently close such that their ellipses intersect. We 
model this constraint by constructing a time-dependent state transition matrix. An entry 
� �ta i, j

 
in this matrix represent the probability of switching from state i to state j at frame 

t.  
 
When all mice are far apart from each other the state transition matrix is set to the 
identity matrix, representing the condition in which states does not change from one 
frame to the next.  When pair-wise ellipse intersections at frame t are detected at frame 
t, the corresponding off-diagonal entries of A are set to a value that is different from 
zero. This signals a non-zero probability that a trajectory swap may take place. For 
example, suppose that the ellipses of trajectories 2 and 3 intersect. This means that a 
state of the form [1,*,3,*] can either switch to state [3,*,1,*] or remain in the same state, 
where * denotes don't care. Rather than estimating the probability of each swap, our 
system sets all possible swap probabilities to the same value and then normalizes the 
rows of A to sum to one (row i represents the probabilities of transitioning from state i to 
all other states). 
 
5. User interface  
 
The graphical user interface (GUI) opens up with a single screen showing a list of all 
analyzed experiments. An experiment is defined as a collection of videos including both 
the single mouse videos and the multiple mouse videos. The user can define a new 
experiment by clicking the “Train” button. The system then asks the user for the single 
mice videos location and continuous with a fully automated process to track the mouse 
in each video and train the associated pattern classifier. The color of the “Train” button 
switches to orange once this process is done. The user can then add long video 
sequences with multiple mice by clicking “Track”. Videos are automatically sorted by 
frames timestamp. The system presents the user with the automatically learned 
background and prompts the user to draw the boundary of the floor of the mouse 
enclosure (Supplementary Fig. 11c) and attempts to automatically segment mice in 7 
random frames with predefined thresholds. The user then verifies the output 
(Supplementary Fig. 11d) and can correct ellipse placement by moving any one of four 
control points on the ellipse contour (see Supplementary Fig. 11d inset). Once the user 
finishes verifying/correcting ellipse placement the system uses this information to 
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8 Detecting follows using JAABA: 
 
Mouse actions were detected using the Janela Automatic Animal Behavior Annotator 
(JAABA).  Video recordings were made over a continuous 120 hour period for each of 
the 6 experiments, and then divided into six 1 hour segments. The ‘male following’ 
classifier was trained on frames from hours 1 and 12 from exp 5, 1 and 12 from exp 4, 
and 2 and 12 from exp 1.  The training set consisted of 4,875 frames from these 
segments, with 2,510 frames covering example bouts of following behavior, and 2,365 
frames containing negative examples.   Only bouts of following initiated by either of the 
two males in each cage were labeled during classifier training, and the 6 segments were 
used concurrently to train the classifier.  
 
The accuracy of the classifier was measured by ground truthing its scores on segments 
that were not used during training, including scores for the 3 cages on different days, 
and scores for 3 additional cages. Approximately 10,000 frames per hour-long segment 
were manually scored, and these frames were chosen semi-randomly using an 
algorithm that selected short segments distributed across each hour, including relatively 
even numbers of frames that the classifier labeled as “following” or “not following.” 
 
The average rates for false alarms and misses for the classifier across all cages and all 
time intervals ground truthed were 6.3% and 5.6% respectively. By experiment, the 
average false alarm rates were 6.5%, 4.8%, 5.9%, 8.2%, 6.2%, and 5.8% for 
experiments1-6. The average rate for misses for experiment were 4.7%, 6.8%, 3.5%, 
7.00%, 5.7%, and  5.8% respectively.  The mating classifier was trained on 1500 frames 
and had a false alarm rate of 3.7% and a miss rate of 18.5%.  
 
Supplementary figures legend 
 
Supplementary Figure 1. Segmentation steps. (a) Example frame from a single mouse 
video. (b) Automatically learned background model. (c) Intensity difference between the 
frame and the background. (d) Binary image is obtained by thresholding the intensity 
difference image. (e) Binary map is closed for holes. (f) Fitted ellipse representing 
mouse pose. 
 
Supplementary Figure 2. Statistical modeling of distributions. (a) Histogram of 
projected HOG features of mouse identity A (blue, positive exemplars) vs. all other mice 
identities (red, negative exemplars). T distribution fits the data better compared to a 
Normal distribution. (b) Same data plotted as cumulative distributions. 
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Supplementary Figure 3. Optimal pattern selection. (a) Classifier performance for four 
mice combination as a function of the average false positive and false negative rate.(b)  
Zoom in version of the top 10 combinations. (c) Top 10 combinations, broken down to 
the identities comprising each combination (identities shown below). 
 
Supplementary Figure 4. Two examples of mice burrowing in bedding. Left column, 
blue mice starts to burrow. Middle column, mouse is completely invisible. Right column, 
mouse emerges from the bedding with correct identity assignment. 
 
Supplementary Figure 5. Multiple hypotheses initialization. Long movies were split to 
multiple non-overlapping intervals. To generate the initial mouse placement in the first 
frame of each interval multiple hypotheses were generated regarding mice position.  
 
Supplementary Figure 6. Quantification of fine positional errors. (a) Four examples of 
ellipses placed by two human annotators (blue and green) and the automatic 
segmentation (red). (b) Differences in position, orientation and size, measured between 
the two human annotators. Annotator 2 repeated the annotation procedure to measure 
consistency. (c) Accuracy in placing ellipses, as measured by the normalized distance 
metric (see Supplementary Text). Each curve represents the distribution of distances 
over all annotated samples between either a human or the machine.  
 
Supplementary Figure 7. Imaging rig. 
(a) Infrared lights (850 nm) are placed close to the camera, to minimize shadows and 
provide continuous illumination across the dark/light cycle.  (b) The video camera 
(Basler A622f) is fitted with (c) an infrared pass filter (pass above 720 nm) which 
ensures no changes in recorded light levels across the light/dark cycle.  (d) Square, 
infrared-transparent tunnels provide shelter without compromising video recording 
quality.  The tunnels are opaque in visible light.  (e) Mice are bleach marked with 
individually-distinctive patterns to allow continuous identity tracking. (f) Water and (g) 
food are continuously available in multiple locations througout the experiment. 
 
Supplementary Figure 8. Mice favorite places during a five days experiment. Each 
image denotes a different five day experiment.  
 
Supplementary Figure 9. Dwelling places population analysis. (a) Percent of time 
spent in each of the monitored regions for six experiments, each lasting 5 days. 
Columns (from left to right) in each experiment represent dominant male, subordinate 
male and two females. (b) Time spent in any of the four corners during dark cycles. 
Each row correspond to a five day experiment. Color indicates different identities (same 
conventions as Fig. 5).  Each column represent 12 hours. 
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Supplementary Figure 10.  Follow speed and duration distributions  (a) The 
distribution of male follow durations for all six experiments. Average follow durations 
varied slightly across experiments (minimum average: 1.87s, maximum average: 2.52s, 
Exp 2 duration distribution was significantly different from all curves and Exp 1 was 
different from Exp 5 at p<.05).  (b) The distribution of male follow speeds for all six 
experiments.  Average follow speeds varied, but not significantly, across experiments 
(minimum average: 22.6 cm/s, maximum average: 31.1 cm/s, p>0.05). 
 
Supplementary Figure 11. Graphical user interface. (a) Main menu. (b) Main menu 
after loading video sequences. (c) User labels the floor region in the video sequence. 
(d) User corrects automatically placed ellipses for obtaining optimal thresholding 
parameters. (e) Video with overlaid tracking results. 
 
Supplementary Figure 12. Four examples of fight bouts annotation by the software. 
Identification errors (annotated by a human observer) are denoted by a red X. 
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